Lesson note

Dealing with fractions with different denominators

Example of a problem of two fractions with different denominators $\frac{2}{3} + \frac{3}{5}$

Step 1 To get a common denominator for the two fractions, multiply the denominators of the two fractions together.

3 x 5=15

Step 2 Draw a line and write the answer at the bottom of the line.

Step 3 Take the denominator of the right hand fraction and multiply this by the enumerator of the left hand fraction, write the answer above the drawn line (*Step 2*) on the left hand side.

5x2=10	
15	

Step 4 Write down the operand after the left hand number above the line

5x2=10	+	
	15	

Step 5 Take the denominator of the left hand fraction and multiply this by the enumerator of the right hand fraction, write the answer above the drawn line (*Step 2*) after the operand

5x2=10	+	3x3=9		19
	15		=	15

Step 6 Work out the fraction from the product/result¹ of the numbers above the line divided by the common denominator

5x2=10 + 3x3=9		19
15	=	15

In this case the answer is a whole number plus four/fifteenth.

¹ B(rackets) O(ff) D(ivision) M(ultiplication) A(ddition) S(ubtraction) applies here